Department of Space Indian Space Research Organisation - Surinder Muni Post's

Surinder Muni Post's

Peace Of Mind

Breaking

Post Top Ad

Responsive Ads Here

Tuesday, 3 October 2017

Department of Space Indian Space Research Organisation

ISRO Logo

ISRO's Timeline from 1960s to Today



Organisation Structure

Organisation Structure

Space Science & Exploration

Indian space programme encompasses research in areas like astronomy, astrophysics, planetary and earth sciences, atmospheric sciences and theoretical physics. Balloons, sounding rockets, space platforms and ground-based facilities support these research efforts. A series of sounding rockets are available for atmospheric experiments. Several scientific instruments have been flown on satellites especially to direct celestial X-ray and gamma-ray bursts.

AstroSat

AstroSat is the first dedicated Indian astronomy mission aimed at studying celestial sources in X-ray, optical and UV spectral bands simultaneously. The payloads cover the energy bands of Ultraviolet (Near and For), limited optical and X-ray regime (0.3 keV to 100keV). One of the unique features of AstroSat mission is that it enables the simultaneous multi-wavelength observations of various astronomical objects with a single satellite.
AstroSat with a lift-off mass of 1515 kg was launched on September 28, 2015 into a 650 km orbit inclined at an angle of 6 deg to the equator by PSLV-C30 from Satish Dhawan Space Centre, Sriharikota. The minimum useful life of the AstroSat mission is expected to be 5 years.

Mars Orbiter Mission

Mars Orbiter Mission is ISRO’s first interplanetary mission to planet Mars with an orbiter craft designed to orbit Mars in an elliptical orbit of 372 km by 80,000 km. Mars Orbiter mission can be termed as a challenging technological mission and a science mission considering the critical mission operations and stringent requirements on propulsion, communications and other bus systems of the spacecraft. The primary driving technological objective of the mission is to design and realize a spacecraft with a capability to perform Earth Bound Manoeuvre (EBM), Martian Transfer Trajectory (MTT) and Mars Orbit Insertion (MOI) phases and the related deep space mission planning and communication management at a distance of nearly 400 million Km. Autonomous fault detection and recovery also becomes vital for the mission.

Chandrayaan-1

Chandrayaan-1, India's first mission to Moon, was launched successfully on October 22, 2008 from SDSC SHAR, Sriharikota. The spacecraft was orbiting around the Moon at a height of 100 km from the lunar surface for chemical, mineralogical and photo-geologic mapping of the Moon. The spacecraft carried 11 scientific instruments built in India, USA, UK, Germany, Sweden and Bulgaria.

Chandrayaan-2

Chandrayaan-2 will be an advanced version of the previous Chandrayaan-1 mission to Moon.Chandrayaan-2 is configured as a two module system comprising of an Orbiter Craft module (OC) and a Lander Craft module (LC) carrying the Rover developed by ISRO.

Satellite Navigation

Satellite Navigation service is an emerging satellite based system with commercial and strategic applications. ISRO is committed to provide the satellite based Navigation services to meet the emerging demands of the Civil Aviation requirements and to meet the user requirements of the positioning, navigation and timing based on the independent satellite navigation system. To meet the Civil Aviation requirements, ISRO is working jointly with Airport Authority of India (AAI) in establishing the GPS Aided Geo Augmented Navigation (GAGAN) system. To meet the user requirements of the positioning, navigation and timing services based on the indigenous system, ISRO is establishing a regional satellite navigation system called Indian Regional Navigation Satellite System (IRNSS).

(a) GPS Aided GEO Augmented Navigation (GAGAN):

This is a Satellite Based Augmentation System (SBAS) implemented jointly with Airport Authority of India (AAI). The main objectives of GAGAN are to provide Satellite-based Navigation services with accuracy and integrity required for civil aviation applications and to provide better Air Traffic Management over Indian Airspace. The system will be interoperable with other international SBAS systems and provide seamless navigation across regional boundaries. The GAGAN Signal-In-Space (SIS) is available through GSAT-8 and GSAT-10.

(b) Indian Regional Navigation Satellite System (IRNSS) : NavIC

This is an independent Indian Satellite based positioning system for critical National applications. The main objective is to provide Reliable Position, Navigation and Timing services over India and its neighbourhood, to provide fairly good accuracy to the user. The IRNSS will provide basically two types of services
  1. Standard Positioning Service (SPS)
  2. Restricted Service (RS)
Space Segment consists of seven satellites, three satellites in GEO stationary orbit (GEO) and four satellites in Geo Synchronous Orbit (GSO) orbit with inclination of 29° to the equatorial plane. This constellation of seven satellites was named as "NavIC" (Navigation with Indian Constellation) by the Honourable Prime Minister of India, Mr. Narendra Modi and dedicated to the Nation on the occasion of successful launch of IRNSS-1G, the seventh and last satellite of NavIC. All the satellites will be visible at all times in the Indian region. All the seven Satellites of NavIC, namely, IRNSS-1A, 1B, 1C, ID,1E, 1F and 1G were successfully launched on July 02, 2013, Apr 04, 2014, Oct 16, 2014, Mar 28, 2015, Jan 20, 2016, Mar 10, 2016 and Apr 28, 2016 respectively and all are functioning satisfactorily from their designated orbital positions.
Ground Segment is responsible for the maintenance and operation of the IRNSS constellation. It provides the monitoring of the constellation status, computation of the orbital and clock parameters and navigation data uploading. The Ground segment comprises of TTC & Uplinking Stations, Spacecraft Control Centre, IRNSS Timing Centre, CDMA Ranging Stations, Navigation Control Centre and Data Communication Links. Space segment is compatible with single frequency receiver for Standard Positioning Service (SPS), dual frequency receiver for both SPS & RS service and a multi mode receiver compatible with other GNSS providers.

Earth Observation Satellites

Starting with IRS-1A in 1988, ISRO has launched many operational remote sensing satellites. Today, India has one of the largest constellations of remote sensing satellites in operation. Currently, *thirteen* operational satellites are in Sun-synchronous orbit – RESOURCESAT-1, 2, 2A CARTOSAT-1, 2, 2A, 2B, RISAT-1 and 2, OCEANSAT-2, Megha-Tropiques, SARAL and SCATSAT-1, and *four* in Geostationary orbit- INSAT-3D, Kalpana & INSAT 3A, INSAT -3DR. Varieties of instruments have been flown onboard these satellites to provide necessary data in a diversified spatial, spectral and temporal resolutions to cater to different user requirements in the country and for global usage. The data from these satellites are used for several applications covering agriculture, water resources, urban planning, rural development, mineral prospecting, environment, forestry, ocean resources and disaster management.

Launchers


Historic          Operational                    Future

SLV                           
ASLV                        
PSLV
GSLV
Sounding Rockets                                 
GSLV Mk III
RLV-TD
Scramjet Engine - TD


Overview

launchers
Launchers or Launch Vehicles are used to carry spacecraft to space. India has two operational launchers: Polar Satellite Launch Vehicle (PSLV) and Geosynchronous Satellite Launch Vehicle (GSLV). GSLV with indigenous Cryogenic Upper Stage has enabled the launching up to 2 tonne class of communication satellites. The next variant of GSLV is GSLV Mk III, with indigenous high thrust cryogenic engine and stage, having the capability of launching 4 tonne class of communication satellites.
In order to achieve high accuracy in placing satellites into their orbits, a combination of accuracy, efficiency, power and immaculate planning are required. ISRO's Launch Vehicle Programme spans numerous centres and employs over 5,000 people. Vikram Sarabhai Space Centre, located in Thiruvananthapuram, is responsible for the design and development of launch vehicles. Liquid Propulsion Systems Centre and ISRO Propulsion Complex, located at Valiamala and Mahendragiri respectively, develop the liquid and cryogenic stages for these launch vehicles. Satish Dhawan Space Centre, SHAR, is the space port of India and is responsible for integration of launchers. It houses two operational launch pads from where all GSLV and PSLV flights take place.








  • PSLV
  • Polar Satellite Launch Vehicle was developed to launch Low Earth Orbit satellites into Polar and Sun Synchronous Orbits. It has since proved its versatility by launching Geosynchronous, Lunar and Interplanetary spacecraft successfully.
  • Read More



  • GSLV
  • Geosynchronous Satellite Launch Vehicle was developed to launch the heavier INSAT class of Geosynchronous satellites into orbit. In its third and final stage, GSLV uses the indigenously developed Cryogenic Upper Stage.
  • Read More


  • Sounding Rockets
  • SRO launches smaller rockets from the Rohini series on suborbital and atmospheric flights for aeronomy and meteorological studies. ATV, ISRO's heaviest sounding rocket, can be used for microgravity experiments and for precursor experiments to characterise new technologies.
  • Read More
  •   
  • Launchers

Missions

  Trending                           Latest Missions                                                 Future

A (8) B (2) C (9) E (1) G (28) H (1) I (38) J (1) K (1) L (1) M (2) N (1) O (2) P (43) R (9) S (16) T (1)Y (1)

92
* Including
2 Nano Satellites
64
** Including
  Scramjet-TD & RLV-TD
9
2
209
*** of 28 Countries


Post Bottom Ad

Responsive Ads Here

Pages